Pre-Feasibility Assessment for Integration of Wood-Fired Heating Systems
Final Report
July 24, 2012

AVCP: Tugkar & Lomack Buildings
Bethel, Alaska

Presented by
CTA Architects Engineers
Jesse Vigil, Nick Salmon & Nathan Ratz

Lars Construction Management Services
Rex Goolsby

For
AVCP

In partnership with
Fairbanks Economic Development Corporation
Alaska Wood Energy Development Task Group

Funded by
Alaska Energy Authority and U.S. Forest Service
TABLE OF CONTENTS

1.0 Executive Summary .. 1
2.0 Introduction ... 3
3.0 Existing Building Systems ... 3
4.0 Energy Use .. 3
5.0 Biomass Boiler Size ... 4
6.0 Wood Fuel Use ... 5
7.0 Boiler Plant Location and Site Access ... 6
8.0 Integration with Existing Heating Systems ... 6
9.0 Air Quality Permits .. 6
10.0 Wood Heating Options ... 6
11.0 Estimated Costs ... 7
12.0 Economic Analysis Assumptions ... 7
13.0 Results of Evaluation ... 7
14.0 Project Funding .. 8
15.0 Summary ... 8
16.0 Recommended Action ... 8

Appendixes

Appendix A: Preliminary Estimates of Probable Cost .. 2 pages
Appendix B: Cash Flow Analysis .. 4 pages
Appendix C: Site Plan .. 3 pages
Appendix D: Air Quality Report .. 9 pages
Appendix E: Wood Fired Heating Technologies .. 3 pages
1.0 Executive Summary

The following assessment was commissioned to determine the preliminary technical and economic feasibility of integrating a wood fired heating system in the AVCP: Tugkar & Lomack Buildings. The Tugkar & Lomack buildings are on separate sites approximately 0.3 of a mile from each other. Each building was reviewed as a standalone system due to the cost of infrastructure to connect the buildings, as well as the additional energy needed to drive the increased pump size.

The following tables summarize the current fuel use and the potential wood fuel use:

Table 1.1 - Fuel Use Summary

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Fuel Type</th>
<th>Avg. Use (Gallons)</th>
<th>Average Annual Cost</th>
<th>Cost/Gal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugkar</td>
<td>Fuel Oil</td>
<td>5,017</td>
<td>$31,607</td>
<td>$6.29</td>
</tr>
<tr>
<td>Lomack</td>
<td>Fuel Oil</td>
<td>6,698</td>
<td>$42,197</td>
<td>$6.29</td>
</tr>
</tbody>
</table>

Note: Wood fuel use assumes offsetting 85% of the current energy use.

Based on the available wood fuel, a pellet option and cord wood option will be evaluated. The options reviewed were:

Pellet Wood Boiler Options:

- B.1T: Tugkar Building.
- B.1L: Lomack Building.

Cord Wood Boiler Options:

- C.1T: Tugkar Building.
- C.1L: Lomack building.

The table on the following page summarizes the economic evaluation for each option:
The Tugkar and Lomack buildings appear to be poor candidates for the use of wood biomass heating systems. With the current economic assumptions, the economic viability of all the options is poor and none of the options meet the minimum requirement of the 20 year B/C ratio exceeding 1.0. Even with the high cost of fuel oil, each building individually does not spend enough on heating fuel to be able to pay for a project through potential savings.
2.0 Introduction
The following assessment was commissioned to determine the preliminary technical and economic feasibility of integrating a wood fired heating system in the AVCP: Tugkar & Lomack Buildings. The Tugkar & Lomack buildings are on separate sites approximately .3 of a mile from each other. Each building was reviewed as a standalone system due to the cost of infrastructure to connect the buildings, as well as the additional energy needed to drive the increased pump size.

3.0 Existing Building Systems

AVCP: Tugkar (3rd and Main) Building
The Tugkar Building is a two story wood framed building constructed in 1990 and expanded in 1992. The facility is approximately 11,731 square feet and is heated by three 160,000 Btu/hr output hot water boilers. Domestic hot water is provided by an electric water heater rated at 4.5 KW input with a 28 gallon storage tank. One of the Burnham Boilers is original to the building and is in good condition. The remaining two Burnham Boilers have been installed as a replacement to the original boilers at an unspecified time.

AVCP: Lomack Building
The Lomack Building is a two story wood framed building constructed in 1987 and remodeled in 2004. The facility is approximately 14,714 square feet and is heated by two hot water boilers rated at 284,000 and 302,000 Btu/hr output. Domestic hot water is provided by one electric water heater rated at 4.5 KW input with a 50 gallon storage capacity. Both of the existing boilers are original to the building and are in fair condition.

<table>
<thead>
<tr>
<th>Building</th>
<th>Heat System</th>
<th>BTU/hr Output</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugkar</td>
<td>Burnham Boiler</td>
<td>160,000</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Burnham Boiler</td>
<td>160,000</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Burnham Boiler</td>
<td>160,000</td>
<td>Good</td>
</tr>
<tr>
<td>Lomack</td>
<td>Burnham Boiler</td>
<td>284,000</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Burnham Boiler</td>
<td>302,000</td>
<td>Fair</td>
</tr>
</tbody>
</table>

4.0 Energy Use
Fuel oil bills for the facilities were provided. The following table summarizes the data:

<table>
<thead>
<tr>
<th>Facility Name</th>
<th>Fuel Type</th>
<th>Avg. Use (Gallons)</th>
<th>Average Annual Cost</th>
<th>Average Cost/Gal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugkar</td>
<td>Fuel Oil</td>
<td>5,017</td>
<td>$31,607</td>
<td>$6.29</td>
</tr>
<tr>
<td>Lomack</td>
<td>Fuel Oil</td>
<td>6,698</td>
<td>$42,197</td>
<td>$6.29</td>
</tr>
</tbody>
</table>
Electrical energy consumption will increase with the installation of the wood fired boiler system because of the power needed for the biomass boiler components such as draft fans and the additional pumps needed to integrate into the existing heating systems. The cash flow analysis accounts for the additional electrical energy consumption and reduces the annual savings accordingly.

5.0 **Biomass Boiler Size**
The following table summarized the connected load of the heating equipment:

<table>
<thead>
<tr>
<th></th>
<th>Output MBH</th>
<th>Peak Load Factor</th>
<th>Likely Peak System MBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugkar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burnham Boiler</td>
<td>Fuel Oil</td>
<td>160</td>
<td>0.66</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Burnham Boiler</td>
<td>Fuel Oil</td>
<td>160</td>
<td>0.66</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>Lomack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burnham Boiler</td>
<td>Fuel Oil</td>
<td>284</td>
<td>0.66</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td></td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>Burnham Boiler</td>
<td>Fuel Oil</td>
<td>302</td>
<td>0.66</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td></td>
<td></td>
<td>199</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>Total Of All Buildings</td>
<td>1066</td>
<td>704</td>
<td></td>
</tr>
</tbody>
</table>

Typically a wood heating system is sized to meet approximately 85% of the typical annual heating energy use of the building. The existing heating systems would be used for the other 15% of the time during peak heating conditions, during times when the biomass heating system is down for servicing, and during swing months when only a few hours of heating each day are required. Recent energy models have found that a boiler sized at 50% to 60% of the building peak load will typically accommodate 85% of the boiler run hours.

<table>
<thead>
<tr>
<th></th>
<th>Likely System MBH</th>
<th>Biomass Boiler Size MBH</th>
<th>Biomass Boiler Peak MBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tugkar</td>
<td>317</td>
<td>0.6</td>
<td>190</td>
</tr>
<tr>
<td>Lomack</td>
<td>387</td>
<td>0.6</td>
<td>232</td>
</tr>
</tbody>
</table>
The buildings are too far apart to consider a district heating system to connect them together. Each building would require its own wood fired boiler and the table above shows the estimated biomass boiler size.

6.0 Wood Fuel Use

The types of wood fuel available in the area include cord wood, wood pallets, and wood pellets. The estimated amount of wood fuel needed of each wood fuel type for each building was calculated and is listed below:

<table>
<thead>
<tr>
<th>Table 1.2 - Annual Wood Fuel Use Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Oil (Gallons)</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Tugkar</td>
</tr>
<tr>
<td>Lomack</td>
</tr>
</tbody>
</table>

Note: Wood fuel use assumes offsetting 85% of the current energy use.

The amount of wood fuel shown in the table is for offsetting 85% of the total fuel oil use. The moisture content of the wood fuels and the overall wood burning system efficiencies were accounted for in these calculations. The existing fuel oil boilers were assumed to be 80% efficient. Cord wood was assumed to be 20% moisture content (MC) with a system efficiency of 65%. Wood pellets were assumed to be 7% MC with a system efficiency of 70%.

The unit fuel costs for fuel oil and the different fuel types were calculated and equalized to dollars per million Btu ($/MMBtu) to allow for direct comparison. The Delivered $/MMBtu is the cost of the fuel based on what is actually delivered to the heating system, which includes all the inefficiencies of the different systems. The Gross $/MMBtu is the cost of the fuel based on raw fuel, or the higher heating value and does not account for any system inefficiencies. The following table summarizes the equalized fuel costs at different fuel unit costs:

<table>
<thead>
<tr>
<th>Table 6.2 - Unit Fuel Costs Equalized to $/MMBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Type</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Fuel Oil</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cord Wood</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pellets</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 6.2 - Unit Fuel Costs Equalized to $/MMBtu

<table>
<thead>
<tr>
<th></th>
<th>Unit Fuel Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$520.00</td>
<td>$45.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$31.71</td>
</tr>
</tbody>
</table>

7.0 Boiler Plant Location and Site Access

The existing boiler rooms in both buildings are not large enough to fit a new biomass boiler so a new stand alone boiler plant would be required. The best location for a plant would be adjacent to each building as indicated on the site plans located in Appendix C.

Any type of biomass boiler system will require access by delivery vehicles. For cord wood systems this would likely be pick-up trucks and trucks with trailers. For pellet boilers, this would require area for a trailer to turn around. A wood pellet boiler with an adjacent silo appears to be the most appropriate solution. Wood pellet fuel would need to be conveyed into the silo utilizing a pneumatic blower or grain auger. A pneumatic blower allows greater flexibility in the relationship between the delivery vehicle and silo.

8.0 Integration with Existing Heating Systems

Integration of a wood fired heating system varies from facility to facility. The integration of the building to the biomass boiler would require the installation of new heating hot water supply and return pipes to connect to the existing boiler supply and return pipes.

The field visit confirmed the location of each boiler room and heating unit location in order to identify an approximate point of connection from a district heating loop to each existing building. Connections would typically be achieved with arctic pipe extended to the face of each building, and extended up the exterior surface of the building in order to penetrate exterior wall into the boiler room or building. Once the heating water supply and return piping enters the existing

9.0 Air Quality Permits

Resource System Group (RSG) has completed and air quality feasibility study for three new wood boilers in Bethel, Alaska. Bethel has favorable meteorology for dispersion of emissions. Prevailing winds would likely blow emissions towards the southeast. In addition, the proposed wood boilers will be small emission sources, whose sizes preclude them from state permitting requirements. Therefore, we do not suggest advanced emission control such as an ESP or baghouse. However, other design criteria have been suggested to minimize emissions and maximize dispersion. These projects may be subject to federal requirements.

10.0 Wood Heating Options

The technologies available to produce heating energy from wood based biomass are varied in their approach, but largely can be separated into three types of heating plants: cord wood, wood pellet and wood chip/ground wood fueled. See Appendix E for these summaries.

Based on the available wood fuel, a pellet option and cord wood option will be evaluated. The options reviewed were:

Pellet Wood Boiler Options:

B.1T: Tugkar Building.
B.1L: Lomack Building.

Cord Wood Boiler Options:
- C.1T: Tugkar Building.
- C.1L: Lomack building.

Wood pellet boiler options assume a freestanding boiler building with adjacent free standing pellet silo. The cord wood boiler option assumes a free standing building with interior cordwood fuel storage.

11.0 Estimated Costs
The total project costs are at a preliminary design level and are based on RS Means and recent biomass project bid data. The estimates are shown in the appendix. These costs are conservative and if a deeper level feasibility analysis is undertaken and/or further design occurs, the costs may be able to be reduced.

12.0 Economic Analysis Assumptions
The cash flow analysis assumes fuel oil at $6.29/gal, electricity at $0.50/kwh, cord wood delivered at $600/cord, and wood pellets delivered at $460/ton. The fuel oil, electricity, and cord wood costs are based on the costs reported by the facility. Pellet costs were obtained from an engineering study investigating using pellet boilers at the AVCP Housing Authority Complex.

It is assumed that the wood boiler would supplant 85% of the estimated heating use, and the existing heating systems would heat the remaining 15%. Each option assumes the total project can be funded with grants and non obligated capital money. The following inflation rates were used: O&M - 2%, Fossil Fuel – 5%, Wood Fuel – 3%, Discount Rate for NPV calculation – 3%. The fossil fuel inflation rate is based on the DOE EIA website. DOE is projecting a slight plateau with a long term inflation of approximately 5%. As a point of comparison, oil prices have increased at an annual rate of over 8% since 2001.

The analysis also accounts for additional electrical energy required for the wood fired boiler system as well as the system pumps to distribute heating hot water to the buildings. Wood fired boiler systems also will require more maintenance, and these additional maintenance costs are also factored into the analysis.

13.0 Results of Evaluation
The following table summarizes the economic evaluation for each option:

<table>
<thead>
<tr>
<th>Table 13.1 - Economic Evaluation Summary</th>
<th>Bethel Tugkar and Lomack Biomass Heating Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Cost (PC)</td>
<td>Operating Savings</td>
</tr>
<tr>
<td>B.1T</td>
<td>$656,000</td>
</tr>
<tr>
<td>C.1T</td>
<td>$279,000</td>
</tr>
<tr>
<td>B.1L</td>
<td>$656,000</td>
</tr>
<tr>
<td>C.1L</td>
<td>$279,000</td>
</tr>
</tbody>
</table>
The benefit to cost ratio (B/C) takes the net present value (NPV) of the net energy savings and divides it by the construction cost of the project. A B/C ratio greater than or equal to 1.0 indicates an economically advantageous project.

Accumulated cash flow (ACF) is another evaluation measure that is calculated in this report and is similar to simple payback with the exception that accumulated cash flow takes the cost of financing and fuel escalation into account. For many building owners, having the accumulated cash flow equal the project cost within 15 years is considered necessary for implementation. If the accumulated cash flow equals project cost in 20 years or more, that indicates a challenged project. Positive accumulated cash flow should also be considered an avoided cost as opposed to a pure savings.

14.0 Project Funding
AVCP may pursue a biomass project grant from the Alaska Energy Authority.

AVCP could also enter into a performance contract for the project. Companies such as Siemens, McKinstry, Johnson Controls and Chevron have expressed an interest in participating in funding projects of all sizes throughout Alaska. This allows the facility owner to pay for the project entirely from the guaranteed energy savings, and to minimize the project funds required to initiate the project. The scope of the project may be expanded to include additional energy conservation measures such as roof and wall insulation and upgrading mechanical systems.

15.0 Summary
The Tugkar and Lomack buildings appear to be poor candidates for the use of wood biomass heating systems. With the current economic assumptions, the economic viability of all the options is poor and none of the options meet the minimum requirement of the 20 year B/C ratio exceeding 1.0. Even with the high cost of fuel oil, each building individually does not spend enough on heating fuel to be able to pay for a project through potential savings.

16.0 Recommended Actions
Because of the availability of wood pallets at low or no cost, further investigation into specialized wood stoves or boilers that can burn pallets would be recommended. Additional analysis would be required to determine the quantity and quality of wood pallets in Bethel, as well as the cost.

Additional investigation should also be completed on increasing the cord wood production volume and infrastructure. If the cost per cord could be reduced the project would become more viable.
APPENDIX A

Preliminary Estimates of Probable Cost
Preliminary Estimates of Probable Cost
AVCP Tugkar and Lomack Biomass Heating Options
Bethel, AK

Option B.1 - Tugkar

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Boiler Building</td>
<td>$90,000</td>
</tr>
<tr>
<td>Wood Heating, Wood Handling System, & Pellet Silo</td>
<td>$140,000</td>
</tr>
<tr>
<td>Stack/Air Pollution Control Device</td>
<td>$50,000</td>
</tr>
<tr>
<td>Mechanical/Electrical within Boiler Building</td>
<td>$75,000</td>
</tr>
<tr>
<td>Underground Piping</td>
<td>$12,000</td>
</tr>
<tr>
<td>Tugkar Integration</td>
<td>$14,500</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$381,500</td>
</tr>
<tr>
<td>30% Remote Factor</td>
<td>$114,450</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$495,950</td>
</tr>
<tr>
<td>Design Fees, Building Permit, Miscellaneous Expenses 15%</td>
<td>$74,393</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$570,343</td>
</tr>
<tr>
<td>15% Contingency</td>
<td>$85,551</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$655,894</td>
</tr>
</tbody>
</table>

Option C.1 - Tugkar

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Boiler Building Including Wood Storage Area</td>
<td>$97,500</td>
</tr>
<tr>
<td>Wood Boiler System</td>
<td>$16,000</td>
</tr>
<tr>
<td>Stack</td>
<td>$2,200</td>
</tr>
<tr>
<td>Mechanical/Electrical within Boiler Building</td>
<td>$20,200</td>
</tr>
<tr>
<td>Underground Piping</td>
<td>$12,000</td>
</tr>
<tr>
<td>Tugkar Integration</td>
<td>$14,500</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$162,400</td>
</tr>
<tr>
<td>30% Remote Factor</td>
<td>$48,720</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$211,120</td>
</tr>
<tr>
<td>Design Fees, Building Permit, Miscellaneous Expenses 15%</td>
<td>$31,668</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$242,788</td>
</tr>
<tr>
<td>15% Contingency</td>
<td>$36,418</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$279,206</td>
</tr>
</tbody>
</table>
Preliminary Estimates of Probable Cost
AVCP Tugkar and Lomack Biomass Heating Options
Bethel, AK

Option B.1 - Lomack

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Boiler Building:</td>
<td>$90,000</td>
</tr>
<tr>
<td>Wood Heating, Wood Handling System, & Pellet Silo:</td>
<td>$140,000</td>
</tr>
<tr>
<td>Stack/Air Pollution Control Device:</td>
<td>$50,000</td>
</tr>
<tr>
<td>Mechanical/Electrical within Boiler Building:</td>
<td>$75,000</td>
</tr>
<tr>
<td>Underground Piping</td>
<td>$12,000</td>
</tr>
<tr>
<td>Lomack Integration</td>
<td>$14,500</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$381,500</td>
</tr>
<tr>
<td>30% Remote Factor</td>
<td>$114,450</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$495,950</td>
</tr>
<tr>
<td>Design Fees, Building Permit, Miscellaneous Expenses 15%:</td>
<td>$74,393</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$570,343</td>
</tr>
<tr>
<td>15% Contingency:</td>
<td>$85,551</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$655,894</td>
</tr>
</tbody>
</table>

Option C.1 - Lomack

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass Boiler Building Including Wood Storage Area:</td>
<td>$97,500</td>
</tr>
<tr>
<td>Wood Boiler System:</td>
<td>$16,000</td>
</tr>
<tr>
<td>Stack:</td>
<td>$2,200</td>
</tr>
<tr>
<td>Mechanical/Electrical within Boiler Building:</td>
<td>$20,200</td>
</tr>
<tr>
<td>Underground Piping</td>
<td>$12,000</td>
</tr>
<tr>
<td>Lomack Integration</td>
<td>$14,500</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$162,400</td>
</tr>
<tr>
<td>30% Remote Factor</td>
<td>$48,720</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$211,120</td>
</tr>
<tr>
<td>Design Fees, Building Permit, Miscellaneous Expenses 15%:</td>
<td>$31,668</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$242,788</td>
</tr>
<tr>
<td>15% Contingency:</td>
<td>$36,418</td>
</tr>
<tr>
<td>Total Project Costs</td>
<td>$279,206</td>
</tr>
</tbody>
</table>
APPENDIX B

Cash Flow Analysis
EXISTING CONDITIONS

- **Existing Fuel Type:** Fuel Oil Fuel Oil Fuel Oil Fuel Oil
- **Fuel Units:** gal gal gal gal
- **Current Fuel Unit Cost:** $6.29
- **Estimated Average Annual Fuel Usage:** 5,017 5,017
- **Annual Heating Costs:** $31,557 $0 $0 $0 $31,557

ENERGY CONVERSION (to 1,000,000 Btu; or 1 dkt)

- **Fuel Heating Value (Btu/unit of fuel):** 134,500 134,500 134,500 134,500
- **Current Annual Fuel Volume (Btu):** 674,786,500 0 0 0
- **Assumed efficiency of existing heating system (%):** 80% 80% 80% 80%
- **Net Annual Energy Produced (Btu):** 539,829,200 0 0 0 539,829,200

WOOD FUEL COST

- **Wood Pellets**
 - **$/ton:** $460.00
 - **Assumed efficiency of wood heating system (%):** 70%

PROJECTED WOOD FUEL USAGE

- **Estimated Btu content of wood fuel (Btu/lb) - Assumed 7% MC:** 8,200
- **Tons of wood fuel to supplant net equivalent of 100% annual heating load:** 47
- **Tons of wood fuel to supplant net equivalent of 85% annual heating load:** 40
- **25 ton chip van loads to supplant net equivalent of 85% annual heating load:** 2

PROJECTED WOOD FUEL USAGE

- **Wood Pellets**
 - **$/ton:** $460.00
 - **Assumed efficiency of wood heating system (%):** 70%

PROJECTED WOOD FUEL USAGE

- **Estimated Btu content of wood fuel (Btu/lb) - Assumed 7% MC:** 8,200
- **Tons of wood fuel to supplant net equivalent of 100% annual heating load:** 47
- **Tons of wood fuel to supplant net equivalent of 85% annual heating load:** 40
- **25 ton chip van loads to supplant net equivalent of 85% annual heating load:** 2

PROJECTED WOOD FUEL USAGE

- **Wood Pellets**
 - **$/ton:** $460.00
 - **Assumed efficiency of wood heating system (%):** 70%

PROJECTED WOOD FUEL USAGE

- **Estimated Btu content of wood fuel (Btu/lb) - Assumed 7% MC:** 8,200
- **Tons of wood fuel to supplant net equivalent of 100% annual heating load:** 47
- **Tons of wood fuel to supplant net equivalent of 85% annual heating load:** 40
- **25 ton chip van loads to supplant net equivalent of 85% annual heating load:** 2
EXISTING CONDITIONS

Lomack Total

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Fuel Oil</th>
<th>Fuel Oil</th>
<th>Fuel Oil</th>
<th>Fuel Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Fuel Type:</td>
<td>Fuel Oil</td>
<td>Fuel Oil</td>
<td>Fuel Oil</td>
<td>Fuel Oil</td>
</tr>
<tr>
<td>Fuel Units:</td>
<td>gal</td>
<td>gal</td>
<td>gal</td>
<td>gal</td>
</tr>
<tr>
<td>Current Fuel Unit Cost:</td>
<td>$6.29</td>
<td>$4.10</td>
<td>$4.10</td>
<td>$4.10</td>
</tr>
<tr>
<td>Estimated Average Annual Fuel Usage:</td>
<td>6,698</td>
<td>6,698</td>
<td>6,698</td>
<td>6,698</td>
</tr>
<tr>
<td>Annual Heating Costs:</td>
<td>$42,130</td>
<td>$0</td>
<td>$0</td>
<td>$42,130</td>
</tr>
</tbody>
</table>

ENERGY CONVERSION (to 1,000,000 Btu; or 1 dkt)

Fuel Heating Value (Btu/unit of fuel):	134,500	134,500	134,500	134,500
Current Annual Fuel Volume (Btu):	900,881,000	0	0	900,881,000
Assumed efficiency of existing heating system (%):	80%	80%	80%	80%
Net Annual Energy Produced (Btu):	720,704,800	0	0	720,704,800

WOOD FUEL COST

- **Wood Pellets**
 - **$/ton:** $460.00
 - **Assumed efficiency of wood heating system (%):** 70%

PROJECTED WOOD FUEL USAGE

- **Estimated Btu content of wood fuel (Btu/lb) - Assumed 7% MC:** 8200
- **Tons of wood fuel to supplant net equivalent of 100% annual heating load:** 63
- **Tons of wood fuel to supplant net equivalent of 85% annual heating load:** 53
 - **25 ton chip van loads to supplant net equivalent of 85% annual heating load:** 2

Project Capital Cost

- **-$656,000

Project Financing Information

<table>
<thead>
<tr>
<th>Percent Financed</th>
<th>0.0%</th>
</tr>
</thead>
</table>

Energy Conversion (to 1,000,000 Btu; or 1 dkt)

<table>
<thead>
<tr>
<th>Type</th>
<th>1565 kWh</th>
<th>Type</th>
<th>1565 W</th>
<th>Type</th>
<th>40 kW</th>
<th>Type</th>
<th>220 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Financed</td>
<td>$0</td>
<td></td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Rate</td>
<td>$0.500 /kWh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of Grants</td>
<td>$656,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st 2 Year Learning</td>
<td>$2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st 2 Year Learning</td>
<td>$2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest Rate</td>
<td>5.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Finance Cost (years)</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Net Benefit B/C Ratio

<table>
<thead>
<tr>
<th>Year</th>
<th>2,742.4 years</th>
<th>Net Benefit B/C Ratio</th>
<th>$333,623</th>
<th>-$322,377</th>
<th>0.51</th>
<th>$148,273</th>
<th>-$507,727</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Accumulated Cash Flow > 0</td>
<td>#N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Accumulated Cash Flow > Project Capital Cost</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inflation Factors

- **O&M Inflation Rate:** 2.0%
- **Fossil Fuel Inflation Rate:** 5.0%
- **Wood Fuel Inflation Rate:** 3.0%
- **Electricity Inflation Rate:** 5.0%
- **Discount Rate for Net Present Value Calculation:** 3.0%

Detailed Cost Descriptions

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit Costs</th>
<th>Annual Heating Source Volume</th>
<th>Heating Units</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Heating System Operating Costs</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Energy Conversion</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Additional Operation and Maintenance Costs</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Costs for Non-Pure Source Variations</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Capital Cost - Principal and Interest</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total System Replacement Costs (year one only)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Net Annual Cash Flow</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Annual Operating Cost Savings</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
EXISTING CONDITIONS

Existing Fuel Type:

- Fuel Oil

Estimated Average Annual Fuel Usage:

- 5,017 gal

Annual Heating Costs:

- $31,557

ENERGY CONVERSION (to 1,000,000 Btu; or 1 dkt)

Fuel Heating Value (Btu/unit of fuel):

- 134,500 Btu/gal

Current Annual Fuel Volume (Btu):

- 674,786,500 Btu

Assumed efficiency of existing heating system (%):

- 80%

Net Annual Energy Produced (Btu):

- 539,829,200 Btu

WOOD FUEL COST

$/cord:

- $600.00

Assumed efficiency of wood heating system (%):

- 65%

PROJECTED WOOD FUEL USAGE

Estimated Btu content of wood fuel (Btu/cord) - Assumed 20% MC:

- 16,173,800 Btu/cord

Cords of wood fuel to supplant net equivalent of 100% annual heating load:

- 51 cords

Cords of wood fuel to supplant net equivalent of 85% annual heating load:

- 44 cords

25 ton chip van loads to supplant net equivalent of 85% annual heating load:

- N/A

Project Capital Cost

- $279,000

Project Financing Information

<table>
<thead>
<tr>
<th>Percent Financed</th>
<th>0.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. Pwr Use</td>
<td>1150 kWh</td>
</tr>
<tr>
<td>Type</td>
<td>Hr/Wk</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
<tr>
<td>Amount of Grants</td>
<td>$279,000</td>
</tr>
<tr>
<td>1st 2 Year Learning</td>
<td>2.0</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>5.00%</td>
</tr>
<tr>
<td>Term</td>
<td>10</td>
</tr>
<tr>
<td>Annual Finance Cost (years)</td>
<td>$0</td>
</tr>
</tbody>
</table>

Simple Payback:

- Total Project Cost / Year One Operating Cost Savings:

Net Present Value (30 year analysis):

- Net Present Value (20 year analysis):
EXISTING CONDITIONS

Lomack Total

- **Existing Fuel Type:** Fuel Oil
- **Fuel Units:** gal, gal, gal, gal
- **Current Fuel Unit Cost:** $6.29
- **Estimated Average Annual Fuel Usage:** 6,698 gal
- **Annual Heating Costs:** $42,130

Energy Conversion (to 1,000,000 Btu; or 1 dtk)

- **Fuel Heating Value (Btu/unit of fuel):** 134,500 Btu
- **Current Annual Fuel Volume (Btu):** 900,881,000 Btu
- **Assumed efficiency of existing heating system (%):** 80%
- **Net Annual Energy Produced (Btu):** 720,704,800 Btu

Wood Fuel Cost

- **Cord Wood**
 - **$/cord:** $600.00
 - **Assumed efficiency of wood heating system (%):** 65%

Projected Wood Fuel Usage

- **Estimated Btu content of wood fuel (Btu/cord) - Assumed 20% MC, 6,700 Btu/lb x 28.4 lb/cf x 85 cf:** 16,173,800 Btu
- **Cords of wood fuel to supplant net equivalent of 100% annual heating load:** 69 cords
- **Cords of wood fuel to supplant net equivalent of 85% annual heating load:** 58 cords
- **25 ton chip van loads to supplant net equivalent of 85% annual heating load:** N/A

Project Capital Cost: $279,000

Project Financing Information

- **Percent Financed:** 0.0%
- **Est. Pwr Use:** 1150 kWh
- **Wage/Hr:** Total
- **Amount Financed:** $0
- **Elec Rate:** $0.500 /kWh
- **Biomass System:** 10.0 40 400 $20.00 $8,000
- **Amount of Grants:** $279,000
- **Other:** N/A 40 0 $20.00 $0
- **1st 2 Year Learning:** 2.0 40 80 $20.00 $1,600
- **Interest Rate:** 5.00%
- **Term:** 10 years
- **Annual Finance Cost (years):** $0
- **-29.9 years Net Benefit B/C Ratio:** $150,815
- **$2,610**
- **-29.9 years Year Accumulated Cash Flow > 0:** 19 years
- **-29.9 years Year Accumulated Cash Flow > Project Capital Cost:** 29 years

Inflation Factors

- **O&M Inflation Rate:** 2.0%
- **Fossil Fuel Inflation Rate:** 5.0%
- **Wood Fuel Inflation Rate:** 3.0%
- **Electricity Inflation Rate:** 5.0%
- **Discount Rate for Net Present Value Calculation:** 3.0%

Cash Flow Descriptions

<table>
<thead>
<tr>
<th>Year</th>
<th>Unit Costs</th>
<th>Heating Source</th>
<th>Annual Heating Source</th>
<th>Heating Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Operating Heating System Operating Costs

- **Heating cost:** $27,997
- **Heating cost:** $28,404
- **Heating cost:** $28,806
- **Heating cost:** $29,218
- **Heating cost:** $29,641
- **Heating cost:** $30,074
- **Heating cost:** $30,518
- **Heating cost:** $30,972
- **Heating cost:** $31,437
- **Heating cost:** $31,912
- **Heating cost:** $32,398
- **Heating cost:** $32,904
- **Heating cost:** $33,421
- **Heating cost:** $33,959
- **Heating cost:** $34,517
- **Heating cost:** $35,096
- **Heating cost:** $35,696
- **Heating cost:** $36,317
- **Heating cost:** $36,958
- **Heating cost:** $37,620
- **Heating cost:** $38,303
- **Heating cost:** $39,007
- **Heating cost:** $39,731
- **Heating cost:** $40,476
- **Heating cost:** $41,242
- **Heating cost:** $42,030
- **Heating cost:** $42,841

Dispersed System Replacement Costs (year one only)

- **$0**

Net Annual Cash Flow

- **$6,797**
- **$8,806**
- **$10,806**
- **$12,806**
- **$14,818**
- **$16,841**
- **$18,885**
- **$20,940**
- **$22,996**
- **$25,064**
- **$27,143**
- **$29,234**
- **$31,336**
- **$33,449**
- **$35,573**
- **$37,708**
- **$39,855**
- **$42,013**
- **$44,182**
- **$46,363**
- **$48,556**
- **$50,751**
- **$53,058**
- **$55,377**
- **$57,708**
- **$60,049**

Accumulated Cash Flow

- **$9,797**
- **$11,503**
- **$13,219**
- **$14,945**
- **$16,681**
- **$18,438**
- **$20,216**
- **$22,015**
- **$23,835**
- **$25,686**
- **$27,568**
- **$29,470**
- **$31,393**
- **$33,337**
- **$35,302**
- **$37,288**
- **$39,295**
- **$41,323**
- **$43,371**
- **$45,440**
- **$47,529**
- **$49,639**
- **$51,769**
- **$53,919**
- **$56,100**
- **$58,302**
- **$60,525**
- **$62,769**
- **$65,034**
- **$67,319**
- **$69,624**
- **$71,949**
- **$74,295**
- **$76,661**
- **$79,047**
- **$81,453**
- **$83,879**
- **$86,325**
- **$88,791**
- **$91,277**
- **$93,783**
- **$96,309**
- **$98,855**
- **$101,421**
- **$104,007**
- **$106,613**
- **$109,239**
- **$111,885**
- **$114,551**
- **$117,237**
- **$119,943**
- **$122,669**
- **$125,414**
- **$128,179**
- **$131,064**
- **$134,069**
- **$137,094**
- **$140,139**
- **$143,204**
- **$146,290**
- **$149,396**
- **$152,523**
- **$155,670**
- **$158,838**
- **$162,026**
- **$165,235**
- **$168,464**
- **$171,714**
- **$174,985**
- **$178,277**
- **$181,590**
- **$184,924**
- **$188,279**
- **$191,655**
- **$195,052**
- **$198,470**
- **$201,909**
- **$205,370**
- **$208,852**
- **$212,355**
- **$215,879**
- **$219,424**
- **$223,000**
APPENDIX C

Site Plan
APPENDIX D

Air Quality Report
INTRODUCTION
At your request, RSG has conducted an air quality feasibility study for three biomass energy installations in Bethel. Bethel is located in southwest Alaska at the head of the Wood River and has a population of 6,000 people. The following equipment is proposed:

- A 250,000 Btu/hr (heat output) cord wood boiler at the Tukgar Building.
- A 3,100,000 Btu/hr (heat output) pellet boiler at the AVCP Housing Complex.
- A 250,000 Btu/hr (heat output) cord wood boiler at the Lomack Building.

STUDY AREA
A USGS map of the study area is provided in Figure 1 below. As shown, the area is flat with much low-lying areas along the Kuskokwin River. Relative to other sites in Alaska, the area is densely populated. Our review of the area did not reveal any significant emission sources or ambient air quality issues.
Figure 1: USGS Map Illustrating the Study Area
Figure 1 shows CTA Architects' plan of the location of the proposed biomass facility at the Tukgar Building and the surrounding buildings. As shown, two locations are being considered for the proposed biomass equipment. The site is relatively flat and relatively densely populated with one to two story tall buildings. The precise stack location and dimensions, and the biomass equipment specifications have not been determined.

Figure 1: Overview of Tukgar Site
Figure 2 shows CTA Architects’ plan of the proposed biomass facility at the AVCP Building and the surrounding buildings. Most of the buildings are approximately one to two stories tall. A stand-alone biomass facility is planned on the southeast corner of the site. The remote location of the facility will provide a dispersion buffer between the stack and the office buildings.

Figure 2: Overview of AVCP Housing Site
Figure 3 shows CTA Architects' plan of the proposed biomass facility at the Lomack Building and the surrounding buildings. Most of the buildings are approximately one to two stories tall. An addition is planned for the northern side of the building.

Figure 3: Overview of Lomack Building Building Site
METEOROLOGY

Meteorological data from Bethel, AK, was reviewed to develop an understanding of the weather conditions. As shown, there is a relatively low percentage of “calms” or times when the wind is not blowing.¹ This data indicates only 1% of the year when calm winds occur, which suggests there will be minimal time periods when thermal inversions and therefore poor emission dispersion conditions can occur.

Figure 4: Wind Speed Data from Bethel, AK

¹ See: http://climate.gi.alaska.edu/Climate/Wind/Direction/Bethel/BET.html
Figure 5 is a wind rose developed from wind speed and direction data collected in Bethel. This shows prevailing winds are from the northeast (NNE and NE), meaning, they frequently blow towards the southeast. Average wind speeds are up to 12 miles per hour in those directions. This suggests emissions would typically be blown towards the southeast.

Figure 5: Wind Rose Showing Wind Speed and Direction

See: http://climate.gi.alaska.edu/Climate/Wind/Direction/Bethel/BET.html
DESIGN & OPERATION RECOMMENDATIONS

The following are suggested for designing this project:

- Burn natural wood, whose characteristics (moisture content, bark content, species, geometry) - result in optimal combustion in the equipment selected for the project.
- Do not install a rain cap above the stack. Rain caps obstruct vertical airflow and reduce dispersion of emissions.
- Construct the stack to at least 1.5 times the height of the tallest rooftop of the adjacent building. Hence, a 20 foot rooftop would result in a minimum 30 foot stack.
- Operate and maintain the boiler according to manufacturer's recommendations.
- Perform a tune-up at least every other year as per manufacturer's recommendations and EPA guidance (see below for more discussion of EPA requirements)
- Conduct regular observations of stack emissions. If emissions are not characteristic of good boiler operation, make corrective actions.

These design and operation recommendations are based on the assumption that state-of-the-art combustion equipment is installed.

STATE AND FEDERAL PERMIT REQUIREMENTS

This project will not require an air pollution control permit from the Alaska Department of Environmental Quality given the boilers’ relatively small size and corresponding quantity of emissions. However, this project will be subject to new proposed requirements in the federal “Area Source Rule” (40 CFR 63 JJJJJJ). A federal permit is not needed. However, there are various record keeping, reporting and operation and maintenance requirements which must be performed to demonstrate compliance with the requirements in the Area Source Rule. The proposed changes have not been finalized. Until that time, the following requirements are applicable:

- Submit initial notification form to EPA within 120 days of startup.
- Complete biennial tune ups per EPA method.
- Submit tune-up forms to EPA.

Please note the following:

- Oil and coal fired boilers are also subject to this rule.
- Gas fired boilers are not subject to this rule.
- More requirements are applicable to boilers equal to or greater than 10 MMBtu/hr heat input. These requirements typically warrant advanced emission controls, such as a baghouse or an electrostatic precipitator (ESP).

The compliance guidance documents and compliance forms can be obtained on the following EPA web page: http://www.epa.gov/boilercompliance/
SUMMARY

RSG has completed an air quality feasibility study for three new wood boilers in Bethel, Alaska. The boilers are not subject to state permitting requirements, but are subject to federal requirements. Design criteria have been suggested to minimize emissions and maximize dispersion. We do not suggest advanced emission controls (ESP, baghouse) for the following reasons:

1. Bethel has favorable meteorology for dispersion of emissions.
2. The wood boilers will be relatively small emission sources.
3. There are no applicable federal or state emission limits.
4. The Bethel area is relatively rural with no significant emission sources.

Given the prevailing winds, we recommend wherever possible to construct boiler stacks on the south to southwest sides of buildings.

While not mandatory, we recommend exploring the possibility of a cyclone or multi-cyclone technology for control of fly ash and larger particulate emissions. We also recommend developing a compliance plan for the aforementioned federal requirements.

Please contact me if you have any comments or questions.
APPENDIX E

Wood Fired Heating Technologies
WOOD FIRED HEATING TECHNOLOGIES

CTA has developed wood-fired heating system projects using cord wood, wood pellet and wood chips as the primary feedstock. A summary of each system type with the benefits and disadvantages is noted below.

Cord Wood
Cord wood systems are hand-stoked wood boilers with a limited heat output of 150,000-200,000 British Thermal Units per hour (Btu/hour). Cord wood systems are typically linked to a thermal storage tank in order to optimize the efficiency of the system and reduce the frequency of stoking. Cord wood boiler systems are also typically linked to existing heat distribution systems via a heat exchanger. Product data from Garn, HS Tarm and KOB identify outputs of 150,000-196,000 Btu/hr based upon burning eastern hardwoods and stoking the boiler on an hourly basis. The cost and practicality of stoking a wood boiler on an hourly basis has led most operators of cord wood systems to integrate an adjacent thermal storage tank, acting similar to a battery, storing heat for later use. The thermal storage tank allows the wood boiler to be stoked to a high fire mode 3 times per day while storing heat for distribution between stoking. Cord wood boilers require each piece of wood to be hand fed into the firebox, hand raking of the grates and hand removal of ash. Ash is typically cooled in a barrel before being stock piled and later broadcast as fertilizer.

Cordwood boilers are manufactured by a number of European manufacturers and an American manufacturer with low emissions. These manufacturers currently do not fabricate equipment with ASME (American Society of Mechanical Engineers) certifications. When these non ASME boilers are installed in the United States, atmospheric boilers rather than pressurized boilers are utilized. Atmospheric boilers require more frequent maintenance of the boiler chemicals.

Emissions from cord wood systems are typically as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>>0.08 lb/MMbtu</td>
</tr>
<tr>
<td>NOx</td>
<td>0.23 lb/MMbtu</td>
</tr>
<tr>
<td>SO2</td>
<td>0.025 lb/MMbtu</td>
</tr>
<tr>
<td>CO2</td>
<td>195 lb/MMbtu</td>
</tr>
</tbody>
</table>

Benefits:
Small size
Lower cost
Local wood resource
Simple to operate

Disadvantages:
Hand fed - a large labor commitment
Typically atmospheric boilers (not ASME rated)
Thermal Storage is required
Wood Pellet

Wood pellet systems can be hand fed from 40 pound bags, hand shoveled from 2,500 pound sacks of wood pellets, or automatically fed from an adjacent agricultural silo with a capacity of 30-40 tons. Pellet boilers systems are typically linked to existing heat distribution systems via a heat exchanger. Product data from KOB, Forest Energy and Solagen identify outputs of 200,000-5,000,000 Btu/hr based upon burning pellets made from waste products from the western timber industry. A number of pellet fuel manufacturers produce all tree pellets utilizing bark and needles. All tree pellets have significantly higher ash content, resulting in more frequent ash removal. Wood pellet boilers typically require hand raking of the grates and hand removal of ash 2-3 times a week. Automatic ash removal can be integrated into pellet boiler systems. Ash is typically cooled in a barrel before being stock piled and later broadcast as fertilizer. Pellet storage is very economical. Agricultural bin storage exterior to the building is inexpensive and quick to install. Material conveyance is also borrowed from agricultural technology. Flexible conveyors allow the storage to be located 20 feet or more from the boiler with a single auger.

Emissions from wood pellet systems are typically as follows:

- PM2.5 >0.09 lb/MMbtu
- NOx 0.22 lb/MMbtu
- SO2 0.025 lb/MMbtu
- CO2 220 lb/MMbtu

Benefits:
Smaller size (relative to a chip system)
Consistent fuel and easy economical storage of fuel
Automated

Disadvantages:
Higher system cost
Higher cost wood fuel ($/MMBtu)
Wood Chip

Chip systems utilize wood fuel that is either chipped or ground into a consistent size of 2-4 inches long and 1-2 inches wide. Chipped and ground material includes fine sawdust and other debris. The quality of the fuel varies based upon how the wood is processed between the forest and the facility. Trees which are harvested in a manner that minimizes contact with the ground and run through a chipper or grinder directly into a clean chip van are less likely to be contaminated with rocks, dirt and other debris. The quality of the wood fuel will also be impacted by the types of screens placed on the chipper or grinder. Fuel can be screened to reduce the quantity of fines which typically become airborne during combustion and represent lost heat and increased particulate emissions.

Chipped fuel is fed from the chip van into a metering bin, or loaded into a bunker with a capacity of 60 tons or more. Wood chip boilers systems are typically linked to existing heat distribution systems via a heat exchanger. Product data from Hurst, Messersmith and Biomass Combustion Systems identify outputs of 1,000,000 - 50,000,000 Btu/hr based upon burning western wood fuels. Wood chip boilers typically require hand raking of the grates and hand removal of ash daily. Automatic ash removal can be integrated into wood chip boiler systems. Ash is typically cooled in a barrel before being stock piled and later broadcast as fertilizer.

Emissions from wood chip systems are typically as follows:

- **PM2.5**: 0.21 lb/MMbtu
- **NOx**: 0.22 lb/MMbtu
- **SO2**: 0.025 lb/MMbtu
- **CO2**: 195 lb/MMbtu

Benefits:
- Lowest fuel cost of three options ($/MMBtu)
- Automated
- Can use local wood resources

Disadvantages:
- Highest initial cost of three types
- Larger fuel storage required
- Less consistent fuel can cause operational and performance issues